Formulaire de mécanique

Changement de référentiel :

$$\overrightarrow{v_{e}} = \left(\frac{\overrightarrow{dOO'}}{\overrightarrow{dt}}\right)_{\mathcal{R}} + \overrightarrow{\Omega_{\mathcal{R}/\mathcal{R}}} \wedge \overrightarrow{O'M}$$

$$\overrightarrow{a_{e}} = \left(\frac{d^{2}\overrightarrow{OO'}}{dt^{2}}\right)_{\mathcal{R}} + \frac{d\overrightarrow{\Omega_{\mathcal{K}/\mathcal{R}}}}{dt} \wedge \overrightarrow{O'M} + \overrightarrow{\Omega_{\mathcal{K}/\mathcal{R}}} \wedge \left(\overrightarrow{\Omega_{\mathcal{K}/\mathcal{R}}} \wedge \overrightarrow{O'M}\right)$$

$$\overrightarrow{a_c} = 2 \cdot \overrightarrow{\Omega_{\mathcal{K}/\mathcal{R}}} \wedge \overrightarrow{v_r}$$

$$\overrightarrow{f_r} = -m \cdot \overrightarrow{a} \cdot \overrightarrow{f_r} = -m \cdot \overrightarrow{a}$$

$$\overrightarrow{f_{ie}} = -m \cdot \overrightarrow{a_e}$$
 , $\overrightarrow{f_{ic}} = -m \cdot \overrightarrow{a_c}$

* Rotation à vitesse angulaire constante autour d'un axe fixe :

$$\overrightarrow{a_e} = -\dot{\theta}^2 \cdot \overrightarrow{HM}$$
 , donc : $\overrightarrow{f_{ie}} = m \cdot \dot{\theta}^2 \cdot \overrightarrow{HM}$

$$\# \overrightarrow{p^*} = \overrightarrow{0} \text{ et } \overrightarrow{\sigma_A^*} = \overrightarrow{\sigma^*} = \overrightarrow{\sigma_p} = \overrightarrow{\sigma_G}$$

Mécanique du point : autres thèmes non développés

- travail et énergie potentielle
- mouvements à force centrale
- les oscillateurs
- problème à deux corps
- les chocs

Equilibrage d'un solide en rotation autour d'un axe fixe :

\$\text{\$\pi\$ Un tel solide est équilibré \$\infty\$ les actions mécaniques qu'il exerce sur le bâti sont constantes au cours du temps ↔ G est sur l'axe de

rotation (équilibre statique) et l'axe de rotation est un axe principal d'inertie (équilibre dynamique)

- * Méthode d'équilibrage : on rajoute des masses ponctuelles :
- on peut équilibrer avec 1 masse uniquement si E=0 (dans $\mathcal{I}_{(H, v)}$)
- on peut toujours équilibrer avec 2 masses

Théorie des mécanismes :

- $m_{s} = 0$: mécanisme bloqué. $h_{s} = 0$: mécanisme isostatique
- h est le nombre de ddl à rajouter au mécanisme pour le rendre isostatique ou le nombre de conditions géométriques précises que l'on doit assurer pour que le mécanisme satisfasse au modèle.

Torseurs:

$$\text{Torseur des efforts}: \left\{ \mathcal{T}_{\text{ext} \rightarrow \mathcal{E}} \right\} = \left\{ \begin{array}{c} \overrightarrow{F_{\text{ext} \rightarrow \mathcal{E}}} \\ \overrightarrow{\mathcal{M}_{A, \text{ext} \rightarrow \mathcal{E}}} \end{array} \right\}_{A}$$

$$\text{Torseur cinématique}: \left\{ \! \mathcal{V}_{\!\scriptscriptstyle \mathcal{S}\!/\!\mathcal{R}} \right\} \! = \! \left\{ \! \frac{\overrightarrow{\Omega_{\scriptscriptstyle \mathcal{S}\!/\!\mathcal{R}}}}{v_{\scriptscriptstyle A \in \mathcal{S}\!/\!\mathcal{R}}} \! \right\}_{\scriptscriptstyle A}$$

Torseur cinétique :

$$\left\{\mathcal{C}_{_{\mathcal{E}/\mathcal{R}}}\right\} = \left\{\begin{matrix} \overrightarrow{p}_{_{\mathcal{E}/\mathcal{R}}} = \iiint_{M \in \mathcal{E}} \overrightarrow{v}_{_{M \in \mathcal{E}/\mathcal{R}}} \cdot dm = m \cdot \overrightarrow{v}_{_{G \in \mathcal{E}/\mathcal{R}}} \\ \overrightarrow{\sigma}_{_{A \in \mathcal{E}/\mathcal{R}}} = \iiint_{M \in \mathcal{E}} \overrightarrow{AM} \wedge \overrightarrow{v}_{_{M \in \mathcal{E}/\mathcal{R}}} \cdot dm = \sum_{i} \overrightarrow{AM}_{_{i}} \wedge m_{_{i}} \cdot \overrightarrow{v}_{_{i}} \right\}_{A}$$

Torseur dynamique:

$$\left\{\mathcal{D}_{_{\mathcal{E}/\mathcal{R}}}\right\} = \left\{\overrightarrow{\delta_{_{A \in \mathcal{E}/\mathcal{R}}}} = \underbrace{\iiint_{_{M \in \mathcal{E}}}}_{AM \land a} \underbrace{\overrightarrow{a_{_{M \in \mathcal{E}/\mathcal{R}}}} \cdot dm}_{a_{M \in \mathcal{E}/\mathcal{R}}} \cdot dm = \underbrace{m \cdot \overrightarrow{a_{_{G \in \mathcal{E}/\mathcal{R}}}}}_{AM_i \land m_i \cdot \overrightarrow{a_i}}\right\}_{A}$$

$$\begin{cases} \overrightarrow{R_d} = \frac{dp}{dt} \\ \\ \overrightarrow{\delta_{A \in \mathcal{E}/\mathcal{R}}} = \left(\frac{d\overrightarrow{\sigma_{A \in \mathcal{E}/\mathcal{R}}}}{dt} \right)_{\mathcal{R}} + m \cdot \overrightarrow{v_{A \in E/R}} \wedge \overrightarrow{v_{G \in E/R}} \end{cases}$$

$$\underline{\text{Moment d'inertie}}: \ J_{_{\Delta}} = \iiint_{M \in \mathcal{S}} d_{_{\Delta,M}}^{}^{2} \cdot dm$$

Solide homogène de masse m	Axe	Moment d'inertie
Barre de longueur l	⊥ à la barre en son milieu	$J_{\Delta} = \frac{1}{12} \cdot m \cdot l^2$
Cylindre plein de rayon R	Axe du cylindre	$J_{\Delta} = \frac{1}{2} \cdot m \cdot R^2$
Sphère pleine de rayon R	Diamètre	$J_{\Delta} = \frac{2}{5} \cdot m \cdot R^2$

$$\underbrace{\mathsf{Op\acute{e}rateur\ d'inertie}}_{(A,s)} : \ \mathcal{I}_{(A,s)} = \overline{\Omega_{s/R}} \mapsto \iiint_{M \in \mathcal{S}} \overline{AM} \wedge \left(\overline{\Omega_{s/R}} \wedge \overline{AM}\right) \cdot dm$$

$$mat(\mathcal{I}_{(A,\mathcal{S})}) = \begin{pmatrix} A & -F & -E \\ -F & B & -D \\ -E & -D & C \end{pmatrix} \text{ où } A = \iiint_{M \in \mathcal{S}} (y^2 + z^2) \cdot dm$$
$$D = \iiint_{M \in \mathcal{S}} y \cdot z \cdot dm$$

Condition	Propriété	
(O, x, y) plan de symétrie	D=E=0	
(O, z) axe de révolution	Diagonale (D=E=F=0) et A=B	
O point de symétrie	$mat(\mathcal{I}_{(A,S)}) = A \cdot I_3$	

Théorèmes de Koenig et de Huyghens :
$$Y_{0,s} = Y_{0,G_{nts}} + Y_{G,s}^*$$

$$\overrightarrow{\sigma_{O\!\in\!\pounds/\!\mathbb{R}}} = \overrightarrow{OG} \wedge m \cdot \overrightarrow{v_{G\!\in\!\pounds/\!\mathbb{R}}} + \overrightarrow{\sigma_{G\!\in\!\pounds/\!\mathbb{R}^*}^*} \text{ et } \overrightarrow{\delta_{O\!\in\!\pounds/\!\mathbb{R}}} = \overrightarrow{OG} \wedge m \cdot \overrightarrow{a_{G\!\in\!\pounds/\!\mathbb{R}}} + \overrightarrow{\delta_{G\!\in\!\pounds/\!\mathbb{R}^*}^*}$$

$$E_{c} = \frac{1}{2} \cdot m \cdot v_{G \in \mathcal{E}/\mathcal{R}}^{2} + E_{c}^{*}$$

$$\mathcal{I}_{(A,s)}(\vec{u}) = m \cdot \overrightarrow{AG} \wedge \left(\vec{u} \wedge \overrightarrow{AG}\right) + \mathcal{I}_{(G,s)}(\vec{u}) \text{ et } J_{\Delta} = m \cdot d_{\Delta,\Delta_G}^{2} + J_{\Delta_G}$$

Moment cinétique :

$$\begin{array}{l} \overrightarrow{\sigma_{_{A \in \mathcal{S}/\!\!R}}} = \mathcal{I}_{(A,\mathcal{S})}(\overrightarrow{\Omega_{_{\mathcal{S}/\!\!R}}}) + m \cdot \overrightarrow{AG} \wedge \overrightarrow{v_{_{A \in \mathcal{S}/\!\!R}}} \\ \overrightarrow{\sigma_{_{A \in \Delta_{_{\text{five}/\mathscr{Z}}}}}} = J_{_{\Delta}} \cdot \overrightarrow{\Omega_{_{\text{rot}/\Delta}}} + \overrightarrow{\sigma_{_{\perp}}} \ \text{où} \ \overrightarrow{\sigma_{_{\perp}}} = \overrightarrow{0} \ \text{si} : \end{array}$$

- l'axe de rotation Δ est axe de symétrie du système $\mathcal S$
- ou si \mathcal{S} est plan et Δ est perpendiculaire à ce plan

 $\underline{\mathsf{PFD}}: \mathsf{dans} \; \mathsf{un} \; \mathsf{r\'ef\'erentiel} \; \mathsf{galil\'een}, \; \big\{ \mathcal{T}_{\mathsf{ext} \to \mathcal{E}} \big\} = \big\{ \mathcal{D}_{\mathcal{E}/\mathcal{R}} \big\}$

On peut appliquer le PFD (et les autres théorèmes)dans un référentiel non galiléen à condition d'y rajouter les forces d'inerties.

 $\underline{\text{Energie cin\'etique}}: \ E_c = \frac{1}{2} \cdot \iiint_{M \in \mathcal{S}} {v_{M \in \mathcal{S/R}}}^2 \cdot dm = \sum_i \frac{1}{2} \cdot m \cdot {v_i}^2$

pour n'importe quel point A :

$$\boldsymbol{E_c} = \frac{1}{2} \cdot \overrightarrow{\boldsymbol{\sigma}_{\mathsf{A} \in \mathcal{S}/\!\mathcal{R}}} \cdot \overrightarrow{\boldsymbol{\Omega}_{\mathcal{S}/\!\mathcal{R}}} + \frac{1}{2} \cdot \boldsymbol{m} \cdot \boldsymbol{v_{\mathsf{A} \in \mathcal{S}/\!\mathcal{R}}}^2 + \left(\boldsymbol{m} \cdot \overrightarrow{AG}, \overrightarrow{\boldsymbol{v}_{\mathsf{A} \in \mathcal{S}/\!\mathcal{R}}}, \overrightarrow{\boldsymbol{\Omega}_{\mathcal{S}/\!\mathcal{R}}} \right)$$

en G ou en un point A fixe : $E_c = \frac{1}{2} \cdot \overrightarrow{\sigma_{A_{\text{fixe_ou_G}} \in \mathcal{S}/\!\mathcal{R}}} \cdot \overrightarrow{\Omega_{\mathcal{S}/\!\mathcal{R}}}$

$$\boldsymbol{E_c} = \frac{1}{2} \cdot \overrightarrow{\boldsymbol{\sigma}_{\boldsymbol{A_{fixe}} \in \boldsymbol{\Delta_{fixe}, R}}} \cdot \overrightarrow{\boldsymbol{\Omega}_{\textit{S/R}}} = \frac{1}{2} \cdot \boldsymbol{J_{\Delta}} \cdot \boldsymbol{\Omega_{\textit{S/R}}}^2$$

<u>Théorème de l'énergie cinétique</u> : $\frac{dE_c}{dt} = P_{ext} + P_{int}$

 ${\it P}_{\rm int}=0$ s'il s'agit d'un unique solide indéformable ${\it P}_{\rm int}$ ne dépend pas du référentiel considéré

$$\mathcal{P}_{\mathbf{f}_{\mathsf{ie}}}^{\quad *} = 0$$

$$dE_m = \delta W_{Forces\ non\ conservatives}$$

Le frottement : Actions de 52 sur 51

Vitesse de glissement : $\overrightarrow{V_{gliss}} = \overrightarrow{V_{Ie,S1/S2}} = \overrightarrow{V_{Ie$

$$\mathcal{P}_{\text{frottement}} = \overrightarrow{T} \cdot \overrightarrow{v_{\text{gliss}}} \leq 0$$

Si $\overrightarrow{v_{gliss}} = \vec{0}$	Si $\overrightarrow{v_{gliss}} \neq \overrightarrow{0}$
$\left\ \overrightarrow{T} \right\ \le f \cdot \left\ \overrightarrow{N} \right\ $	
	$ \overrightarrow{T} \wedge \overrightarrow{v_{glis}} = \overrightarrow{0} \text{ et } \overrightarrow{T} \cdot \overrightarrow{v_{glis}} < 0$